Temperature Fluctuation and Evaporative Loss Rate in an Algae Biofilm Photobioreactor

Abstract
This study describes the thermal modeling of a novel algal biofilm photobioreactor aimed at cultivating algae for biofuel production. The thermal model is developed to assess the photobioreactor’s thermal profile and evaporative water loss rate for a range of environmental parameters, including ambient air temperature, solar irradiation, relative humidity, and wind speed. First, a week-long simulation of the system has been performed using environmental data for Memphis, TN, on a typical week during the spring, summer, fall, and winter. Then, a sensitivity analysis was performed to assess the effect of each weather parameter on the temperature and evaporative loss rate of the photobioreactor. The range of the daily algae temperature variation was observed to be 12.2 °C, 13.2 °C, 11.7 °C, and 8.2 °C in the spring, summer, fall, and winter, respectively. Furthermore, without active cooling, the characteristic evaporative water loss from the system is approximately 6.0 L/m2 day, 7.3 L/m2 day, 3.4 L/m2 day, and 1.0 L/m2 day in the spring, summer, fall, and winter, respectively.