Abstract
A new family of highly conserved genes, designated rho, has recently been isolated and characterized (P. Madaule and R. Axel, Cell 41:31-40, 1985). These genes have been found in Saccharomyces cerevisiae, Drosophila melanogaster, rats, and humans, and their 21,000-dalton products are highly homologous. The rho p21 protein shares 35% amino acid homology with the Harvey ras p21 protein and on this basis has been proposed to be a G protein. We expressed the Aplysia californica rho gene in Escherichia coli and purified its p21 protein to more than 90% purity. The availability of the rho protein in high quantities made it possible to establish its high affinity for guanine nucleotides. The rho p21 protein had nucleotide-binding properties similar to those of the ras p21 protein. However, a comparison of these proteins revealed some important differences regarding their specificities and affinities. Finally, the rho p21 protein had GTPase activity almost identical to that of a normal ras p21 protein, the rates being 0.106 and 0.105 mol/min per mol of p21, respectively. Thus, the results suggest that the degree of homology found between the ras and rho genes products most likely is related to the conservation of sequences relevant to their ability to bind and hydrolyze guanine nucleotides. The fact that the rho p21 protein binds and hydrolyzes GTP strongly suggests that it is a G protein with a potential regulatory function conserved in evolution.