Establishing a Model for Evaluating Chicken Coccidiosis Resistance Based on Principal Component Analysis

Abstract
To establish a coccidiosis resistance evaluation model for chicken selection, the different parameters were compared between infected and control Jinghai yellow chickens. Validation parameters were selected for principal component analysis (PCA), and an optimal comprehensive evaluation model was selected based on the significance of a correlation coefficient between coccidiosis resistance parameters and principal component functions. The following six different parameters were identified: body weight gain 3–5 days post infection and catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA) and γ-interferon (IFN-γ) concentrations on the eight day post inoculation. Six principal components and one accumulated contribution of up to 80% of the evaluation models were established by PCA. The results showed that the first model was significantly or highly significantly related to nine resistance parameters (p < 0.01 or p < 0.05), especially to cecal lesions (p < 0.01). The remaining models were related to only 2–3 parameters (p < 0.01 or p < 0.05) and not to cecal lesions (p > 0.05). The values calculated by the optimal model (first model) were significantly negatively correlated with cecal lesion performance; the larger the value, the more resistant to coccidiosis. The model fi1 = −0.636 zxi1 + 0.311 zxi2 + 0.801 zxi3 − 0.046 zxi4 − 0.076 zxi5 + 0.588 zxi6 might be the best comprehensive selection index model for chicken coccidiosis resistance selection.
Funding Information
  • Jiangsu Agricultural Industry Technology System (JATS[2018]303, 2014BAD13B02, PAPD, CARS-41-G23)