In vivo characterization of the first acyl-CoA Δ6-desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri

Abstract
Genomic DNA of Ostreococcus tauri, a fully sequenced marine unicellular alga from the phytoplankton, was used to amplify a gene coding for a typical front-end desaturase involved in polyunsaturated fatty acid biosynthesis. Heterologous expression in Saccharomyces cerevisiae revealed very high desaturation activity with Δ6-regioselectivity. Short-time kinetic experiments showed that the desaturase product was detected in the acyl-CoA pool 5 min after addition of the exogenous substrate to the yeast medium and long before its appearance in the total fatty acids. When this desaturase was co-expressed with the acyl-CoA Δ6-elongase from Physcomitrella patens and the lipid-linked Δ5-desaturase from Phaeodactylum tricornutum, high proportions of arachidonic or eicosapentaenoic acid were obtained, because nearly all of the Δ6-desaturated products were elongated. Furthermore, the product/educt ratios calculated in each glycerolipid for the Δ6-desaturase or for the acyl-CoA Δ6-elongase were in about the same range, whereas this ratio showed a very uneven profile in the case of the lipid-linked Δ5-desaturase. Finally, a sequence-based comparison of all the functionally characterized Δ6-desaturases showed that this enzyme was not related to any previously described sequence. Altogether, our data suggest that this desaturase from O. tauri is an acyl-CoA Δ6-desaturase, the first one cloned from a photosynthetically active organism.

This publication has 32 references indexed in Scilit: