Metabolism during normal, fragmented, and recovery sleep

Abstract
Average metabolic data (O2 uptake and CO2 output) were obtained for each 3-min period during consecutive nights of normal, experimentally fragmented, and recovery sleep in a group of 12 normal young adult males. Naturally occurring arousals and awakenings resulted in a characteristic increase in metabolism on the baseline night. The placement of brief frequent experimental arousals on the following night resulted in significantly increased metabolism throughout the night and significantly decreased sleep restoration as measured by morning performance, mood, and alertness tests, even though total sleep time was minimally reduced. Metabolic variables were significantly decreased compared with baseline on the nondisturbed recovery night that followed the sleep fragmentation night. The data cannot be used to infer that increased metabolism during sleep causes nonrestorative sleep, but the direction and time course of metabolic change accompanying arousal are consistent with that hypothesis.