Abstract
B16 mouse melanoma cells are grown inhibited by cyclic AMP or by retinoic acid (RA). However, the combination of these two agents results in less growth inhibition than either agent alone. In order to investigate this interaction, cells were selected for resistance to 8-bromo-cyclic AMP-induced growth inhibition. Two clones (3 and 7) which demonstrated significant resistance were isolated. When these two clones were treated with retinoic acid (RA) it was observed that they also exhibited different degrees of resistance to this growth inhibitor. This cross-resistance did not appear to be due to a lack of uptake or retention of the respective inhibitors, since the mutants took up and retained more 3H-cAMP and 3H-RA than wild type cells, suggesting that the dual resistance was not due to an amplification of P-glycoprotein. The mutation confering cAMP-resistance did not appear to involve cyclic AMP-dependent protein kinase, since both catalytic activity and the amount of cAMP protein binding was similar in wild type and mutants. Thus, the mutation must be beyond the interaction of cAMP with cAMP-dependent protein kinase. We have previously reported that RA induces protein kinase C in B16 melanoma cells (Miles and Loewy: Cancer Res. 49:4483–4487, 1989). Therefore, we measured the ability of RA to induce protein kinase C in the cyclic AMP-resistant mutants. We found an inverse correlation between RA-induced protein kinase C activity and growth inhibition in these mutants. The data reported here suggest that cyclic AMP regulates some step in the RA signal transduction pathway.
Keywords