On the Effect of Organic Substitution of Silicon Alkoxides in Poly(Vinyl Acetate) Organic-Inorganic Composites

Abstract
Organic-inorganic composites (OICs) were prepared via the in-situ polymerization of an organically (phenyl) substituted trialkoxysilane, phenyltriethoxysilane (PhTEOS), in the presence of poly(vinyl acetate) (PVAc). The mechanical reinforcement above T g previously observed in OICs of unfunctionalized organic polymers such as PVAc with acid catalyzed in-situ polymerized tetraalkoxysilane was not observed when the tetraalkoxysilane was replaced with PhTEOS. Although both systems are optically transparent and both exhibit a high degree of hydrogen bonding between the carbonyl of PVAc and the residual hydroxyls of the silicate, the polymerization of the alkoxide is different. The tetra-functional alkoxide polymerizes to form a load-supporting silicate network, leading to a high plateau in the tensile modulus above T g, whereas the trifunctional alkoxide reacts to form primarily low molecular weight oligomers. These increase the T g of the PVAc but do not provide mechanical reinforcement.