Abstract
The study of muscle physiology has undergone many changes over the past 25 years and has moved from purely physiological studies to those intimately intertwined with molecular and cell biological questions. To ask these questions, it is necessary to be able to transfer genetic reagents to cells both in culture and, ultimately, in living animals. Over the past 10 years, a number of different chemical and physical approaches have been developed to transfect living skeletal, smooth, and cardiac muscle systems with varying success and efficiency. This review provides a survey of these methods and describes some more recent developments in the field of in vivo gene transfer to these various muscle types. Both gene delivery for overexpression of desired gene products and delivery of nucleic acids for downregulation of specific genes and their products are discussed to aid the physiologist, cell biologist, and molecular biologist in their studies on whole animal biology.