Frog semitendinosis tendon load-strain and stress-strain properties during passive loading

Abstract
The mechanical properties of the frog semitendinosis (ST) tendon, bone-tendon junction, and aponeurosis were measured during passive loading to a tension equal to maximum isometric tension (Po). Stiffness and strain in these regions continuously increased as load increased. Tendon stiffness was approximately four times the aponeurosis stiffness. Tendon Young's modulus at Po was only 188 MPa, which is approximately 10 times less than the modulus reported for most mammalian tendons. Similarly, tendon stress at Po was only approximately 3 MPa, which is also less than that predicted for many tendons. Tendon strain at Po was approximately 2% after passive loading. We conclude that different regions of the frog ST tendon have different mechanical properties and that the frog ST tendon operates physiologically in the “toe” region of the stress-strain curve with a variable stiffness that increases with load. Taken together, these results have significant implications in understanding muscle-tendon design and neuromotor control strategies.