Reverse Transcription Takes Place within Extracellular HIV-1 Virions: Potential Biological Significance

Abstract
Extracellular HIV-1 virions purified from cell culture supernatants have been found to contain viral DNA that is the result of partial reverse transcription within the virus particles. Our data supported these observations and further indicated that the ratio of genomic RNA to viral DNA was approximately 103:1 for the "strong stop" (R-U5) region and 105: 1 for the gag region. We have shown that, in the absence of detergent, large amounts of DNase-resistant viral DNA can be synthesized within intact HIV-1 virions, indicating that this phenomenon is not dependent on perturbation of the viral envelope. Nascent viral DNA synthesis also occurred in purified virions incubated at 37°C in cell-free human physiological fluids including seminal plasma, blood plasma, breast milk, and fecal fluid. In vitro HIV-1 infection assays, in which HIV-1 DNA synthesis was initiated in HIV-1 virions by prior incubation with deoxyribonucleoside triphosphates, demonstrated that virus particles so treated had an increased infectious titer over untreated virions when incubated with target human T cells. Our data suggest that HIV-1 virion-associated DNA synthesis may occur in vivo and may impact on the efficiency of intra- and interhost virus transmission. If so, this phenomenon should prove to be an important target for antiviral therapeutic strategies.