Pathogen frequency in an age-structured population of Plantago lanceolata

Abstract
Life-history traits can play important roles in determining the course of ecological species interactions. We explored the consequences of host age on a host-pathogen interaction by quantifying pathogen frequency in an age-structured host population. Our project was motivated by an interest in whether the demographic structure of a host population has consequences for species interactions. In 2 successive years, we planted large cohorts of the perennial herb Plantago lanceolata in its natural environment and observed infection by Fusarium moniliforme, a non-lethal floral fungal pathogen, over 3 years. We documented substantial variation of pathogen frequency across years and between cohorts. Logistic regression revealed that pathogen frequency increased with the number of inflorescences produced and with evidence of prior pathogen presence, whereas it decreased with increasing plant longevity. In addition, interannual variation and an age-year interaction contributed to the observed pathogen frequencies. There was a significant positive effect of age on pathogen frequency overall, but this was not consistent over all ages. Pathogen frequency was higher in 2-year-old plants than in 1-year-olds, suggesting that age-structure can influence the host-pathogen interaction. This pattern did not continue into 3-year-old plants. A possible explanation for this is that selective mortality allows only generally robust plants, and consequently the most resistant plants, to survive to the oldest ages.