Abstract
Random sequence mutagenesis in conjunction with genetic complementation was used to map the function of amino acid residues within the putative nucleoside binding site of the herpes simplex virus type 1 (HSV-1) thymidine kinase (TK). Six codons of the putative nucleoside binding site of the HSV-1 tk were substituted by a duplex of extended oligonucleotides containing 20% random sequences. Approximately 260 mutants were screened for the ability to genetically complement a TK-deficient Escherichia coli. Of those screened, 32% conferred TK activity. Approximately 60% of the TK positive clones contained single amino acid changes, 23% contained double changes, and 13.4% encoded the wild-type TK amino acid sequence. A small percentage of clones, 2.4% and 1.2%, contained triple or quadruple alterations, respectively. Three residues (D162, H163, and R164) appeared to be highly conserved especially with regard to the type of residues able to substitute. Secondary screening results indicated that several of the mutants had higher affinities for acyclovir and/or 3'-azido-3'-deoxythymidine than thymidine in complementation assays. In addition, a number of clones were unable to form colonies on selection medium at elevated temperatures (42 degrees C). Eight selected mutants were subcloned into an in vitro transcription vector and the derived transcripts used to program a rabbit reticulocyte lysate cell-free translation system. Biologically active translation products were then analyzed in vitro for thymidine kinase activity, for thermal stability, and for the ability to phosphorylate selected nucleoside analogues. Two of the eight mutants had an elevated thymidine kinase activity, two were significantly thermolabile, and three exhibited enhanced efficiency in phosphorylation of nucleoside analogues.