Expression Profile of Nerve Growth Factor after Muscle Incision in the Rat

Abstract
Background: Previous studies have demonstrated that nerve growth factor (NGF) is an important mediator of pathologic pain. Many studies have focused on cutaneous mechanisms for NGF-induced hyperalgesia; few have examined its contribution in deeper tissues like muscle. This study examined pain behaviors and the expression of NGF in incised hind paw flexor digitorum brevis muscle. Methods: Adult Sprague-Dawley rats were pretreated with anti-NGF peptibody and underwent skin or skin plus deep fascia and muscle incision. Guarding pain behaviors were measured. Muscle NGF messenger RNA (mRNA) was measured by reverse-transcriptase polymerase chain reaction. Changes in NGF protein expression were measured using Western blot, enzyme-linked immunosorbent assay, and immunohistochemistry. In situ hybridization for NGF mRNA was also performed. Results: Pretreatment with anti-NGF peptibody (100 mg/kg) decreased the guarding behavior caused by deep fascia and muscle incision. Muscle NGF mRNA increased abruptly 2 h after incision and was the same as control by postoperative day 1. NGF protein increased from 4 h after incision and was sustained for several days. NGF was localized in many calcitonin gene-related peptide-positive axons, few N52-positive axons, but not isolectin B4-positive axons in incised muscle. The sources of NGF mRNA included keratinocytes in epidermis and fibroblasts in deeper tissues. Conclusion: Fibroblasts adjacent to the injury are sources of NGF in incised muscle. NGF is upregulated by incision of muscle and contributes to guarding pain behavior.