Abstract
The objective of this work was to develop and optimize an alternative make process for Greek-style yogurt (GSY), in which the desired level of protein was reached by fortification with micellar casein concentrate (MCC) obtained from milk by microfiltration. Two MCC preparations with 58 and 88% total protein (MCC-58 and MCC-88) were used to fortify yogurt milk to 9.80% (wt/wt) protein. Strained GSY of similar protein content was used as the control. Yogurt milk bases were inoculated with 0.02% (wt/wt) or 0.04% (wt/wt) direct vat set starter culture and fermented until pH 4.5. The acidification rate was faster for the MCC-fortified GSY than for the control, regardless of the inoculation level, which was attributed to the higher nonprotein nitrogen content in the MCC-fortified milk. Steady shear rate rheological analysis indicated a shear-thinning behavior for all GSY samples, which fitted well with the power law model. Dynamic rheological analysis at 5 C showed a weak frequency dependency of the elastic modulus (GO and viscous modulus (G '') for all GSY samples, with G' > G '', indicating a weak gel structure. Differences in the magnitude of viscoelastic parameters between the 2 types of GSY were found, with G' of MCC-fortified GSY < G' of control, indicating a different extent of protein interactions in the 2 types of yogurt. Differences were also noticed in water-holding capacity, which was lower for the MCC-fortified GSY compared with the control, attributed to lower serum protein content in the former. Despite some differences in the physicochemical characteristics of the final product compared with GSY manufactured by straining, the alternative process developed here is a feasible alternative to the traditional GSY make process, with environmental and possibly financial benefits to the dairy industry.