L-.alpha.-glycerophosphate and L-lactate electrodes based on the electrochemical "wiring" of oxidases

Abstract
The title electrodes were constructed by coimmobilizing the respective FAD oxidases on solid electrode surfaces with a poly(vinyl pyridine) polymer which was N-derivatized with bromoethylamine and Os(bpy)2Cl2. The redox-polymer-enzyme hydrogels were cross-linked on the electrode surface using poly(ethylene glycol) diglycidyl ether. As in the case of glucose oxidase, the redox polymer acts as an electron relaying "wire" transferring electrons directly from the enzymes' FADH2 centers to the electrode. This transfer competes with the natural process of reoxidation of FADH2 by molecular oxygen. The variation of the response of these electrodes with the atmosphere (N2 or air), pH, and substrate concentration was determined. The pH profile of the electrocatalytic current differs from that of the activity of the free enzymes, exhibiting a broader maximum, shifted to higher pH values. The observed sensitivities and linear ranges are respectively 2 x 10(-2) A M-1 cm-2 and 2.7 mM for L-alpha-glycerophosphate, and 0.3 A M-1 cm-2 and 0.2 mM for L-lactate that may be compared to 2 x 10(-2) A M-1 cm-2 and 10 mM for glucose. The 0-90% response time for all electrodes is 1 s or less.