Selective neurodegeneration in murine mucopolysaccharidosis VII is progressive and reversible

Abstract
The mucopolysaccharidoses are caused by inherited deficiencies of lysosomal enzymes involved in the degradative pathway of glycosaminoglycans. Lysosomal storage leads to cellular and organ dysfunction, including mental retardation. Storage lesions are found throughout the diseased brain, but little is known about the cellular and molecular mechanisms that underlie brain dysfunction. In the mouse model of mucopolysaccharidosis VII, we found that specific regions of the brain are vulnerable to neurodegeneration, characterized by the presence of ubiquitin inclusions, neurofilament inclusions, and reactive astrogliosis. The pathological lesions were found predominantly in the hippocampus and cerebral cortex, and they increased progressively with age. Treatment with a recombinant viral vector to correct the enzymatic defect quantitatively reversed the neurodegenerative lesions in targeted regions to normal levels.

This publication has 40 references indexed in Scilit: