Induction of IFN-αβ enables Listeria monocytogenes to suppress macrophage activation by IFN-γ

Abstract
Production of type I interferon (IFN; IFN-alphabeta) increases host susceptibility to Listeria monocytogenes, whereas type II IFN (IFN-gamma) activates macrophages to resist infection. We show that these opposing immunological effects of IFN-alphabeta and IFN-gamma occur because of cross talk between the respective signaling pathways. We found that cultured macrophages infected with L. monocytogenes were refractory to IFN-gamma treatment as a result of down-regulation of the IFN-gamma receptor (IFNGR). The soluble factor responsible for these effects was identified as host IFN-alphabeta. Accordingly, macrophages and dendritic cells (DCs) showed reduced IFNGR1 expression and reduced responsiveness to IFN-gamma during systemic infection of IFN-alphabeta-responsive mice. Furthermore, the increased resistance of mice lacking the IFN-alphabeta receptor (IFNAR(-/-)) to L. monocytogenes correlated with increased expression of IFN-gamma-dependent activation markers by macrophages and DCs and was reversed by depletion of IFN-gamma. Thus, IFN-alphabeta produced in response to bacterial infection and other stimuli antagonizes the host response to IFN-gamma by down-regulating the IFNGR. Such cross talk permits prioritization of IFN-alphabeta-type immune responses and may contribute to the beneficial effects of IFN-beta in treatment of inflammatory diseases such as multiple sclerosis.