Abstract
The present study demonstrated, for the first time, that not only in vitro, but also in vivo, coinfections with Marek's disease virus (MDV) and each of the three avian retroviruses (reticuloendotheliosis virus [REV], avian lymphoid leukosis virus [ALV], and ALV-J) lead to retroviral long terminal repeat (LTR) integration into MDV. A total of 306 chicken and 59 turkey commercial flocks, submitted for differential avian oncogenic virus diagnosis, served to evaluate the flock mixed virus infection rate, the rate of birds with a multiple virus infection, and the issue of retroviral LTR integration into MDV in vivo. About a quarter of the tumor-bearing commercial flocks carried a mixed MDV and retrovirus infection. A total of 2926 DNA samples were analyzed, including 2428 chicken and 498 turkey DNA samples. Of these, 991 DNAs originated from flocks with a multiple virus infection. In 103 DNA preparations from that group (103/991, 10.4%), including 38 and 56 from chicken blood and tumor tissues, respectively, and nine samples from turkey blood, multiple virus sequences were detected by polymerase chain reaction (PCR). Fifty-six of the 103 samples were further analyzed by the previously developed hot spot-combined (HS-cPCR assay, of which 48% (27/56) contained chimeric MDV and retroviral LTR molecules. When extrapolated to the total samples derived from the flocks with multiple virus infection, that rate implies that about 5% of the DNA samples would carry MDV-retrovirus integration events. Several birds held a variety of chimeric molecules, indicating that several recombination events occurred simultaneously. The validation of the MDV and retroviral LTR chimeric constitution of these molecules was derived by the MDV and retroviral heterologous primers used for their creation by the HS-cPCR assay, Southern blotting and their detection by retroviral LTR probes, and LTR amplification from the gel-purified chimeric molecules. From several molecules, the LTR was sequenced, and a 161-bp retroviral LTR sequence was demonstrated. Our biochemical data imply that a recent integration occurred in the birds. The viability of recombinant viruses represented by the chimeric molecules will be further approached.