Abstract
Permeabilized cells and cell extracts of Pelobacter acidigallici catalyzed the conversion of pyrogallol (1,2,3-trihydroxybenzene) to phloroglucinol (1,3,5-trihydroxybenzene) in the presence of 1,2,3,5-tetrahydroxybenzene. Pyrogallol consumption by resting cells stopped after lysis by French press or mild detergent (cetyltrimethylammonium bromide [CTAB]) treatment. Addition of 1,2,3,5-tetrahydroxybenzene to the assay mixture restored pyrogallol consumption and led to stoichiometric phloroglucinol accumulation. The stoichiometry of pyrogallol conversion to phloroglucinol was independent of the amount of tetrahydroxybenzene added. The tetrahydroxybenzene concentration limited the velocity of the transhydroxylation reaction, which reached a maximum at 1.5 mM tetrahydroxybenzene (1 U/mg of protein). Transhydroxylation was shown to be reversible. The equilibrium constant of the reaction was determined, and the free-energy change (delta G degree') of phloroglucinol formation from pyrogallol was calculated to be -15.5 kJ/mol. Permeabilized cells and cell extracts also catalyzed the transfer of hydroxyl moieties between other hydroxylated benzenes. Tetrahydroxybenzene and hydroxyhydroquinone participated as hydroxyl donors and as hydroxyl acceptors in the reaction, whereas pyrogallol, resorcinol, and phloroglucinol were hydroxylated by both donors. A novel mechanism deduced from these data involves intermolecular transfer of the hydroxyl moiety from the cosubstrate (1,2,3,5-tetrahydroxybenzene) to the substrate (pyrogallol), thus forming the product (phloroglucinol) and regenerating the cosubstrate.