Polyamines are essential for cell transformation by pp60v-src: delineation of molecular events relevant for the transformed phenotype

Abstract
Ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis, becomes upregulated during cell proliferation and transformation. Here we show that intact ODC activity is needed for the acquisition of a transformed phenotype in rat 2R cells infected with a temperature-sensitive mutant of Rous sarcoma virus. Addition of the ODC inhibitor alpha-difluoromethyl ornithine (DFMO) to the cells (in polyamine-free medium) before shift to permissive temperature prevented the depolymerization of filamentous actin and morphological transformation. Polyamine supplementation restored the transforming potential of pp60v-src. DFMO did not interfere with the expression of pp60v-src or its in vitro tyrosine kinase activity. The tyrosine phosphorylation of most cellular proteins, including ras GAP, did not either display clear temperature- or DFMO-sensitive changes. A marked increase was, however, observed in the tyrosine phosphorylation of phosphatidylinositol 3-kinase and proteins of 33 and 36 kD upon the temperature shift, and these hyperphosphorylations were partially inhibited by DFMO. A DFMO-sensitive increase was also found in the total phosphorylation of calpactins I and II. The well-documented association of GAP with the phosphotyrosine-containing proteins p190 and p62 did not correlate with transformation, but a novel 42-kD tyrosine phosphorylated protein was complexed with GAP in a polyamine- and transformation-dependent manner. Further, tyrosine phosphorylated proteins of 130, 80/85, and 36 kD were found to coimmunoprecipitate with pp60v-src in a transformation-related manner. Altogether, this model offers a tool for sorting out the protein phosphorylations and associations critical for the transformed phenotype triggered by pp60v-src, and implicates a pivotal role for polyamines in cell transformation.