Abstract
The closure of water-filled glacier bore holes is considered and it is concluded that freezing due to conduction to the surrounding ice is usually the dominant process. On this basis englacial temperatures are obtained from a bore hole near the equilibrium line of Blue Glacier, U.S.A., where the ice thickness is about 125 m. Temperatures range from −0.03° C near the surface to −0.13° C at a depth of 105 m, with an estimated uncertainty of 0.02 or 0.03 deg. On the average the temperature is about 0.05 deg colder than the equilibrium temperature of ice and pure water. It is shown that at this temperature small amounts of water-soluble impurities play an important role in the thermal behavior of the ice. This leads to a new definition of temperate ice in terms of its effective heat capacity. The effective heat capacity of the Blue Glacier ice is apparently much larger than that of pure ice at the same temperature.

This publication has 11 references indexed in Scilit: