A Mathematical Model of Pattern Formation by Swimming Microorganisms*

Abstract
Bioconvection in suspensions of Tetrahymena pyriformis and Crypthecodinium cohnii is described and 2 new patterns, the toroid and the cat's-eye, which appear in shallow suspensions of C. cohnii, are reported. Except in very dense cultures, bioconvection does not arise unless the depth of the suspensions or the mean concentration exceed certain critical values, other things being equal. A mathematical model describing the hydrodynamics of suspension of negatively geotactic microorganisms is described which predicts the existence of critical depths and concentrations. The equations presented admit solutions describing the "polka-dot" patterns seen at low organism concentration in suspensions slightly deeper than the critical value. The discussion here is limited to the case of fairly dilute suspensions, but the basic approach can be applied also to richer cultures.