Temperature Influences Flavor Intensity and Quality in `Granex 33' Onion

Abstract
The effects of temperature and developmental age on flavor intensity and quality were tested by growing `Granex 33' onions (Allium cepa L.) at 16.5, 22.1, 26.7, and 32.2 (±0.4) °C for 50 days and to maturity. Plants were harvested and evaluated for growth characteristics. Bulbs were then analyzed for sulfur (S) assimilation and flavor development parameters. Total bulb S increased linearly with temperature regardless of bulb age. Bulb sulfate changed little over temperatures, indicating that organically bound S increased with temperature. Total pyruvic acid content (pungency), total S-alkenyl cysteine sulfoxide (ACSO) content and individual ACSOs increased linearly in response to temperature when measured at the two developmental stages. Though trans-(+)-S-(1-propenyl)-L-cysteine sulfoxide was the predominant ACSO at most temperatures, (+)-S-methyl-L-cysteine sulfoxide accumulation was greatest among the individual ACSOs in mature bulbs grown at 32.2 °C. Additionally, (+)-S-propyl cysteine sulfoxide was present in the least amount at all treatment levels and developmental stages. Gamma glutamyl propenyl cysteine sulfoxide and 2-carboxypropyl glutathione peptides in the flavor biosynthetic pathway also increased linearly with temperature. When ACSOs were assessed in onion macerate as a measure of alliinase activity, levels of degraded ACSOs increased linearly with growing temperature. The relative percentage of most ACSOs hydrolyzed, however, did not change in response to growing temperature. This suggested that the activity of alliinase was proportional to the amounts of flavor precursors synthesized. Growing temperature, therefore, should be considered when evaluating and interpreting yearly and regional variability in onion flavor.