Iron(II) EDTA Used to Measure the Helical Twist Along Any DNA Molecule

Abstract
A new method has been devised to measure the number of base pairs per helical turn along any DNA molecule in solution. A DNA restriction fragment is adsorbed onto crystalline calcium phosphate, fragmented by reaction with iron(II) EDTA, and subjected to electrophoresis on a denaturing polyacrylamide gel. A modulated cutting pattern results, which gives directly the helical periodicity of the DNA molecule. A 150-base pair sequence directly upstream of the thymidine kinase gene of the type 1 herpes simplex virus was found to have an overall helical twist of 10.5 base pairs per turn, which is characteristic of the B conformation of DNA. In addition, purines 3' to pyrimidines showed lower than expected reactivity toward the iron cutting reagent, which is evidence for sequence-dependent variability in DNA conformation.