Role of human CYP1A1 and NAT2 in 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-induced mutagenicity and DNA adducts

Abstract
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is carcinogenic in multiple organs and numerous species. Bioactivation of PhIP is initiated by PhIP N2-hydroxylation catalysed by cytochrome P450s. Following N-hydroxylation, O-acetylation catalysed by N-acetyltransferase 2 (NAT2) is considered a further possible activation pathway. Genetic polymorphisms in NAT2 may modify cancer risk following exposure. Nucleotide excision repair-deficient Chinese hamster ovary (CHO) cells stably transfected with human cytochrome P4501A1 (CYP1A1) and a single copy of either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alleles were used to test the effect of CYP1A1 and NAT2 polymorphism on PhIP genotoxicity. Cells transfected with NAT2*4 had significantly higher levels of N-hydroxy-PhIP O-acetyltransferase (p = 0.0150) activity than cells transfected with NAT2*5B. Following PhIP treatment, CHO cell lines transfected with CYP1A1, CYP1A1/NAT2*4 and CYP1A1/NAT2*5B each showed concentration-dependent cytotoxicity and hypoxanthine phosphoribosyl transferase (hprt) mutagenesis not observed in untransfected CHO cells. dG-C8-PhIP was the primary DNA adduct formed and levels were dose dependent in transfected CHO cells in the order: CYP1A1 < CYP1A1 and NAT2*5B < CYP1A1 and NAT2*4, although levels did not differ significantly (p > 0.05) following one-way analysis of variance. These results strongly support activation of PhIP by CYP1A1 with little effect of human NAT2 genetic polymorphism on mutagenesis and DNA damage.

This publication has 45 references indexed in Scilit: