Distributed interference compensation for wireless networks

Abstract
We consider a distributed power control scheme for wireless ad hoc networks, in which each user announces a price that reflects compensation paid by other users for their interference. We present an asynchronous distributed algorithm for updating power levels and prices. By relating this algorithm to myopic best response updates in a fictitious game, we are able to characterize convergence using supermodular game theory. Extensions of this algorithm to a multichannel network are also presented, in which users can allocate their power across multiple frequency bands.

This publication has 13 references indexed in Scilit: