Physicochemical Aspects of Phloem Translocation of Herbicides

Abstract
A physicochemical approach to understanding phloem transport of xenobiotics requires that similarities in transport processes in different plant species far outweigh any differences. There is now evidence that this is so, though additional factors such as rate of cuticular penetration, metabolism, and phytotoxicity may differ among plant species and thus may influence distribution patterns. Most herbicides that are translocated in phloem are weak acids, and their transport behavior can now be explained, at least in part, in terms of accumulation and retention in phloem. These processes can, in turn, be explained reasonably well by considering the polarity and acid strength of each compound. Specific carrier processes do not appear to be involved in the transport of most phloem-mobile herbicides. Phloem transport of herbicides has been assessed using the castor bean plant. For acids of pKa 5 and nonionized compounds need to be more polar in order to move well.