Abstract
The spectral characteristics of the pH-sensitive dyes neutral red (NR) and bromcresol purple (BCP) were utilized for studies of the changing intracellular pH (pHi) of sartorius muscles from Rana pipiens, both during the course of an isometric twitch and during recovery metabolism subsequent to a train of twitches. The information from the two dissimilar dyes correlated to confirm the methodology. Neither the fast realkalinization observed during a twitch nor the slow alkalizing phase of recovery metabolism was affected in an obvious manner when phosphocreatine (PC) hydrolysis was blocked by 1-fluoro-2,4-dinitrobenzene (FDNB). Iodoacetic acid (IAA) did inhibit the slow acidic phase of recovery metabolism. The conclusion is made that alkalizing reactions other than PC breakdown must be considered as operative at these levels of activity. Hypertonic solutions altered twitch tension and time course without altering the pHi shifts observed until approximately 75% of the twitch amplitude was abolished. Multiple effects of hypertonic solutions as the muscle approach tonic equilibrium are proposed.