Abstract
Polypeptides and proteins in native conformation exhibit 13C NMR spectra which are highly nondegenerate. Assignment of resonances to carbons in particular residues is hence a prerequisite for a structural analysis of the spectroscopic data. For nonprotonated carbonyl carbons, the assignment can be achieved by selective (1H alpha)13C' 2J decoupling. Using this method, we have assigned the Orn1 and Gly2 carbonyl resonances in alumichrome at 67.9 MHz. We show that a single off-resonance experiment with the decoupling frequency centered in the aliphatic proton spectrum is sufficient to assign unequivocally all the protonated carbon resonances via analysis of the reduced 1J heteronuclear splittings. Alumichrome thus becomes the first complex polypeptide spin system whose 1H, 15N, and now 13C nuclear resonances have been fully identified to date. 13C chemical shifts and 1H--13C spin--spin couplings are discussed in terms of structural strain leading to specific orbital hybridizations and on the basis of polarization effects due to electron density shifts toward hydrogen-bonding and metal-binding sites. A number of 3J(13C--C--C--1H) coupling constants measured on selected multiplets after resolution enhancement were used to derive the x-related Karplus relationship 3J(theta) = (10.2 cos2 theta -- 1.3 cos theta + 0.2) Hz.