Macrophages Transmit Human Immunodeficiency Virus Type 1 Products to CD4-Negative Cells: Involvement of Matrix Metalloproteinase 9

Abstract
It was previously reported that human immunodeficiency virus type 1 (HIV-1) spreads in CD4 lymphocytes through cell-to-cell transmission. Here we report that HIV-1-infected macrophages, but not lymphocytes, transmit HIV-1 products to CD4-negative cells of either epithelial, neuronal, or endothelial origin in the absence of overt HIV-1 infection. This phenomenon was detectable as early as 1 h after the start of cocultivation and depended on cell-to-cell contact but not on the release of viral particles from donor cells. Transfer of HIV-1 products occurred upon their polarization and colocalization within zones of cell-to-cell contact similar to virological synapses. Neither HIV-1 Env nor Nef expression was required but, interestingly, we found that an HIV-1-dependent increase in matrix metalloproteinase 9 production from donor cells significantly contributed to the cell-to-cell transmission of the viral products. The macrophage-driven transfer of HIV-1 products to diverse CD4-negative cell types may have a significant role in AIDS pathogenesis.