Reactivity and Applications of New Amine Reactive Cross-Linkers for Mass Spectrometric Detection of Protein−Protein Complexes

Abstract
Chemical cross-linking of proteins permits the stabilization of noncovalent complexes through introduction of covalent bonds. A crucial challenge is to find the fastest and most efficient cross-linkers in order to minimize reaction times and to handle delicate complexes. New cross-linkers were synthesized by introducing N-hydroxyphthalimide, hydroxybenzotriazole, and 1-hydroxy-7-azabenzotriazole as leaving groups instead of the commonly used N-hydroxysuccimidyl moiety. With the use of matrix-assisted laser desorption ionization (MALDI) mass spectrometry, these new cross-linkers were then compared with the commercially available disuccinimidyl suberate (DSS) for covalent stabilization of the gluthatione-S-transferase (GST) dimer and of an antibody−antigen complex. They showed a better efficiency, generated about 30% more cross-linked complex, and reacted about 10 times faster than DSS. The reaction with the GST dimer was utilized to get information about their reaction efficiency and kinetics. Their ability to stabilize only specific protein complexes was verified by incubating them with a mixture of the proteins GST and ubiquitin. Finally, the cross-linkers were incubated with synthetic peptides to study the selectivity of the binding with various amino acid side chains. Not only lysine but also tyrosine was found to react with the newly synthesized cross-linker containing 1-hydroxy-7-azabenzotriazole as the reactive group.