Novel biocompatible cholinium-based ionic liquids—toxicity and biodegradability

Abstract
The synthesis, characterisation and toxicological assessment of a new group of environmentally friendly ionic liquids are presented. Focussing on the toxic effect of the anion, the ionic liquids were designed by combining the benign cholinium cation, [NMe3(CH2CH2OH)]+, with a range of linear alkanoate anions ([CnH2n+1CO2], n = 1-9), as well as two structural isomers (n = 3 or 4). The toxicity of these ionic liquids was evaluated using filamentous fungi as model eukaryotic organisms. Surprisingly, most of the tested species showed active growth in media containing extremely high ionic liquid concentrations, up to molar ranges in some cases. The biodegradability of these ionic liquids was assessed, and new biotechnological applications for them are proposed, e.g. as solvents for biopolymers. This study leads to the better understanding of the anion influence on the ionic liquid toxicity, but its core is the recognition that conscious design of ionic liquids can be used to deliver truly biocompatible salts without adversely affecting one of the most striking of their properties—their outstanding solvent ability.