Hypoxia and smooth muscle function: key regulatory events during metabolic stress

Abstract
Hypoxia rapidly reduces force in many smooth muscles and we review recent data that shed light on the mechanisms involved. As many regulated cellular processes are integrated to co-ordinate smooth muscle contractility, the processes responsible for decreased force output with altered metabolism are also likely to be many, acting in concert, rather than the actions of one altered parameter. Nevertheless the aim of this study is to elucidate the hierarchical series of events that contribute to reduced smooth muscle force production during altered metabolism. We conclude that in many phasic smooth muscles the decrease in force can be attributed to impaired electro-mechanical coupling whereby the Ca2+ transient is reduced. A direct effect of hypoxia on the Ca2+ channel may be of key importance. In tonic vascular smooth muscles KATP channels may also play a role in the integrated functional responses to hypoxia. There are also many examples of force being reduced, in tonically activated preparations, without a fall in steady-state Ca2+; indeed it usually increases. We examine the roles of altered [ATP], pH, myosin phosphorylation, inorganic phosphate and proteolytic activity on the [Ca2+]-force relationship during hypoxia. We find no defining force-inhibitory role for any one factor acting alone, and suggest that force most probably falls as a result of the combination of myriad factors.