Formation and structure of tin-iron oxide thin film CO sensors

Abstract
Rheotaxial growth and thermal oxidation (RGTO) for depositing thin films is a recognized technique in preparing gas sensitive semiconducting oxides. This paper presents a study performed by x-ray diffraction and scanning Auger microscopy of the mechanisms of growth and formation of the thin films of the new ternary compound Sn1−xFexOy with an iron content in the range O < x < 25 at. %. A structural model of this compound, which is found to be stable over a very large range of Sn/Fe ratios, can be derived by partially substituting Fe3+ ions in Sn4+ sites. This is an easy substitution in view of the similar values shown by the ionic radii (Fe3+ = 0.64 Å, Sn4+ = 0.71 Å) and the Pauling electronegativity (Fe3+ = 1.8, Sn4+ = 1.8) of these two ions. Experimental data, showing that this material is an excellent CO sensor, are reported.