Abstract
The discrepancy noted between theoretical and observational concentrations of O3 in the mesosphere and stratosphere can be explained by an effect of hydrogen compounds and of nitrogen oxides. Solar radiation dissociates water vapor and methane in the thermosphere and upper mesosphere. In the stratosphere the reaction of the excited oxygen atom O(1D) with methane and nitrous oxide leads to a destruction of these two molecules in the stratosphere which corresponds to a production of carbon monoxide with water vapor and of nitric oxide, respectively. Hydrogen and water vapor molecules also react with the electronically excited oxygen atom O(1D) leading to hydroxyl radicals. Insitu sources of H2 exist in the stratosphere and mesosphere: reaction of OH with CH1, photodissociation of formaldehyde, and also reaction between hydroperoxyl radicals and hydrogen atoms. The vertical distribution of water vapor is not affected by its dissociation in the stratosphere and mesosphere since its reformation is rapid.The ratio of the hydroxyl and hydroperoxyl radical concentrations cannot be determined with adequate precision and complicates the calculation of the destruction of ozone which occurs through reactions of OH and HO2 not only with atomic oxygen at the stratopause but also directly in the middle stratosphere and with CO and NO in the lower stratosphere.In addition to the various reactions involving nitric oxide and nitrogen dioxide, the reactions leading to the production and destruction of nitric acid and nitrous acid must be considered. Nitric acid molecules are involved in an eddy diffusion transport from the lower stratosphere into the troposphere and are, therefore, responsible for the removal of nitric oxide which is produced in the stratosphere. Atmospheric conditions must be known at the tropopause.