Fatigue and posttetanic potentiation in single muscle fibers of the frog

Abstract
At 15 degrees C, direct stimulation of frog single muscle fibers at a frequency of 20 Hz produced a tetanic tension that remained constant for 20 s and then declined. The decline was reversed during 1-s interruptions of the stimulus train in the first 50 s of stimulation, but not with longer stimulation. Posttetanic potentiation (PTP), characterized by prolonged twitch relaxation and contraction times and elevation of twitch height, remained for 10-40 min after a 10-s tetanus and for at least 90 min after a 50- to 150-s tetanus. Posttetanic fatigue appeared only after at least 50s of tetanic stimulation. Fatigue was manifested invariably by a reduction in the height of a 200-ms tetanic contraction and usually by a reduction in twitch height after PTP. Fatigued fibers recovered normal contractile responses in 40–160 min. Hypertonic solutions, which blocked contraction in response to tetanic stimulation, prevented posttetanic fatigue but not PTP. The observations suggest that fatigue is caused by a failure in excitation-contraction coupling, probably in relation to consumption of metabolic substrates. Even 10-s tetani which do not produce fatigue can affect muscle contractile function for up to 40 min.

This publication has 14 references indexed in Scilit: