Abstract
The bright band (BB) is a layer of enhanced reflectivity due to melting of aggregated snow and ice crystals. The locally high reflectivity causes significant overestimation in radar precipitation estimates if an appropriate correction is not applied. The main objective of the current study is to develop a method that automatically corrects for large errors due to BB effects in a real-time national radar quantitative precipitation estimation (QPE) product. An approach that combines the mean apparent vertical profile of reflectivity (VPR) computed from a volume scan of radar reflectivity observations and an idealized linear VPR model was used for computational efficiency. The methodology was tested for eight events from different regions and seasons in the United States. The VPR correction was found to be effective and robust in reducing overestimation errors in radar-derived QPE, and the corrected radar precipitation fields showed physically continuous distributions. The correction worked consistently well for radars in flat land regions because of the relatively uniform spatial distributions of the BB in those areas. For radars in mountainous regions, the performance of the correction is mixed because of limited radar visibility in addition to large spatial variations of the vertical precipitation structure due to underlying topography.