Chromatin structure through the cell cycle. Studies with regeneration rat liver

Abstract
Liver nuclei were prepared through the 1st cell cycle in partially hepatectomized young rats showing 30% parenchymal cell synchrony. To determine if nucleosome structure altered during this period, liver nuclei from sham-operated rats were compared with nuclei isolated at various times after partial hepatectomy. These nuclei were exposed to DNase I (EC 3.1.4.5), DNase II (EC 3.1.4.6) or micrococcal nuclease (EC 3.1.4.7) and the nucleosome-associated DNA length was ascertained. In no case was a difference in the DNA lengths associated with nucleosome structure observed. Differences were observed with regard to the histones and their relative association with nuclear material. When nuclei from normal rat livers were incubated in hypo-osmolar medium 9% of histone 1 and 4% of the other histones were released. These released histones, unlike those remaining bound to the nuclei showed high [3H]adenosine and [3H]acetate uptakes in vivo. [32P]Pi uptake was also much greater into released than bound histones 1 and 3, but was not different for histone 2A. At 3.5-4.5 h after partial hepatectomy, the release of histone 1 was trebled and that of histone 4 doubled. By 13.5 h, when phosphorylation of the bound forms of histones 2A and especially 1 was increased, no further changes in histone release in hypo-osmolar medium were found. The released histones from partially hepatectomized livers had indistinguishable [3H]adenosine uptakes from controls. The roles of phosphorylation and ADP-ribosylation in labilizing histone binding are discussed.