Teletraffic analysis and mobility modeling of PCS networks

Abstract
Channel holding time is of primary importance in teletraffic analysis of PCS networks. This quantity depends on user's mobility which can be characterized by the cell residence time. We show that when the cell residence time is not exponentially distributed, the channel holding time is not exponentially distributed either, a fact also confirmed by available field data. In order to capture the essence of PCS network behaviour, including the characterization of channel holding time, a correct mobility model is therefore necessary. The new model must be good enough to fit field data, while at the same time resulting in a tractable queueing system. We propose a new mobility model, called the hyper-Erlang distribution model, which is consistent with these requirements. Under the new realistic operational assumption of this model, in which the cell residence time is generally distributed, we derive analytical results for the channel holding time distribution, which are readily applicable to the hyper-Erlang distribution models. Using the derived analytical results we demonstrate how the distribution of the cell residence time affects the channel holding time distribution. The results presented in this paper can provide guidelines for field data processing in PCS network design and performance evaluation.

This publication has 29 references indexed in Scilit: