Biophysical characterization of a transit peptide directing chloroplast protein import

Abstract
We have investigated the biophysical properties of a 35 amino acid peptide representing the entire length of a chloroplastic targeting sequence. The peptide, termed gamma-tp, corresponds in sequence to the transit peptide of the gamma subunit of the chloroplast ATP synthase from Chlamydomonas reinhardtii. We found that gamma-tp blocks the import of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase into isolated pea chloroplasts (KI approximately 5 microM), suggesting that it interacts with higher plant plastids in a physiological manner. We also found the gamma-tp to have a high affinity for nonpolar environments, but not to cause a general disruption of membrane integrity. Hydrophobic moment analysis suggests that the gamma-tp can adopt an amphipathic beta structure. However, circular dichroism measurements indicate that the peptide is largely a random coil, in both the presence and absence of sodium laurylsulfate micelles. In the absence of a recognizable secondary structural targeting motif, we asked whether the presence of a transit peptide on a chloroplast protein increases the protein's overall affinity for nonpolar environments. Phase-partition experiments with Triton X-114 suggest that this is not the case. These results are discussed in relation to the mechanism of protein targeting to chloroplasts.