Interaction between major histocompatibility complex antigens and epidermal growth factor receptors on human cells.

Abstract
It has been suggested that products of the major histocompatibility complex, the MHC, of vertebrates function in many processes of recognition and ligand binding at the cell surface. Here we show that binding of polyclonal and monoclonal antibodies against human MHC antigens, HLA, reduced the binding of epidermal growth factor (EGF) to its membrane receptors on A-431 tumor cells and on normal human fibroblasts. Binding of EGF at 37 degrees C similarly inhibited the binding of Fab fragments and intact Ig anti-HLA to human cells. The inhibitory effect of anti-HLA antibodies was rapid and dependent upon temperature and antibody concentration and valence. Fluorescence microscopy qualitatively confirmed the binding data and showed that MHC antigens and EGF-receptors do not co-cluster in the membrane.