Exploring subdomain cooperativity in T4 lysozyme II: Uncovering the C‐terminal subdomain as a hidden intermediate in the kinetic folding pathway

Abstract
Intermediates along a protein's folding pathway can play an important role in its biology. Previous kinetics studies have revealed an early folding intermediate for T4 lysozyme, a small, well-characterized protein composed of an N-terminal and a C-terminal subdomain. Pulse-labeling hydrogen exchange studies suggest that residues from both subdomains contribute to the structure of this intermediate. On the other hand, equilibrium native state hydrogen experiments have revealed a high-energy, partially unfolded form of the protein that has an unstructured N-terminal subdomain and a structured C-terminal subdomain. To resolve this discrepancy between kinetics and equilibrium data, we performed detailed kinetics analyses of the folding and unfolding pathways of T4 lysozyme, as well as several point mutants and large-scale variants. The data support the argument for the presence of two distinct intermediates, one present on each side of the rate-limiting transition state barrier. The effects of circular permutation and site-specific mutations in the wild-type and circular permutant background, as well as a fragment containing just the C-terminal subdomain, support a model for the unfolding intermediate with an unfolded N-terminal and a folded C-terminal subdomain. Our results suggest that the partially unfolded form identified by native state hydrogen exchange resides on the folded side of the rate-limiting transition state and is, therefore, under most conditions, a "hidden" intermediate.