High-Level Correlated Approach to the Jellium Surface Energy, without Uniform-Gas Input

Abstract
We resolve the long-standing controversy over the metal surface energy: Density-functional methods that require uniform-electron-gas input agree with each other, but not with high-level correlated calculations such as Fermi hypernetted chain and diffusion Monte Carlo calculations that predict the uniform-gas correlation energy. Here we apply the inhomogeneous Singwi-Tosi-Land-Sjölander method, and find that the density functionals are indeed reliable (because the surface energy is bulklike). Our work also vindicates the use of uniform-gas-based nonlocal kernels in time-dependent density-functional theory.