Remediation of Sleep-Deprivation-Induced Working Memory Impairment with fMRI-Guided Transcranial Magnetic Stimulation

Abstract
Repetitive transcranial magnetic stimulation (rTMS) was applied to test the role of selected cortical regions in remediating sleep-deprivation–induced deficits in visual working memory (WM) performance. Three rTMS targets were chosen using a functional magnetic resonance imaging (fMRI)–identified network associated with sleep-deprivation–induced WM performance impairment: 2 regions from the network (upper left middle occipital gyrus and midline parietal cortex) and 1 nonnetwork region (lower left middle occipital gyrus). Fifteen participants underwent total sleep deprivation for 48 h. rTMS was applied at 5 Hz during a WM task in a within-subject sham-controlled design. The rTMS to the upper-middle occipital site resulted in a reduction of the sleep-induced reaction time deficit without a corresponding decrease in accuracy, whereas stimulation at the other sites did not. Each subject had undergone fMRI scanning while performing the task both pre- and postsleep deprivation, and the degree to which each individual activated the fMRI network was measured. The degree of performance enhancement with upper-middle occipital rTMS correlated with the degree to which each individual failed to sustain network activation. No effects were found in a subset of participants who performed the same rTMS procedure after recovering from sleep deprivation, suggesting that the performance enhancements seen following sleep deprivation were state dependent.