Gibbs Energy Analysis of Phase Equilibria

Abstract
Equations of state are used to predict or to match equilibrium fluid phase behavior for systems as diverse as distillation columns and miscible gas floods of oil reservoirs. The success of such simulations depends on correct predictions of the number and the compositions of phases present at a given temperature, pressure, and overall fluid composition. For example, recent research has shown that three or more phases may exist in equilibrium in CO2 floods. This paper shows why an equation of state can predict the incorrect number of phases or incorrect phase compositions. The incorrect phase descriptions still satisfy the usual restrictions on equality of chemical potentials of components in each phase and conservation of moles in the system. A new method and its mathematical proof are presented for determining when a phase equilibrium solution is incorrect. Examples of instances where incorrect predictions may be made are described. These include a binary system in which a two-phase solution may be predicted for a single-phase fluid and a multicomponent CO2/reservoir oil system in which three or more phases may coexist.