Abstract
High-purity hydrogen is commercially produced by pressure swing adsorption from hydrogen-rich mixtures. In this work, a vacuum pressure swing adsorption cycle is used to produce high purity hydrogen from a hydrogen-lean binary mixture (20/80 H2/CO) using zeolite 5A as the sorbent. The effects of different process variables on separation performance have been studied. The purity of hydrogen product increases at low throughput, high feed pressure, high end pressure of cocurrent depressurization, low end pressure of countercurrent evacuation, and short cycle time. Also, it was found that for a H2-lean mixture, the separation is improved at higher ambient temperature. In addition, a new “vacuum purge” step was found to improve the separation and is therefore a promising step for commercial application.