The role of interstitial collagens in cleft formation of mouse embryonic submandibular gland during initial branching

Abstract
An interstitial collagenase was purified from the explant medium of bovine dental pulp and was shown to degrade collagens I and III but not IV and V. The enzyme halted cleft initiation in the epithelium of 12day mouse embryonic submandibular glands in vitro, indicating the active involvement of interstitial collagens in the branching morphogenesis. Transmission electron microscopic observation of the intact 12-day gland without any clefts showed the scattered localization of a few collagen fibrils at the epithelial-mesenchymal interface of the bulb and also revealed the presence of numerous microfibrils around the stalk. Collagen bundles were regularly seen close to the wavy basal lamina at the bottom of clefts of the intact 13-day gland and 12-day gland cultured for 17 h under normal conditions. Mesenchymal cells were found in the clefts together with the frequent localization of peripheral nerve fibres and capillary endothelial cells. The collagen bundles were more often observed in the 12-day gland cultured in the presence of bovine dental pulp collagenase inhibitor, which had been shown to enhance cleft formation. In contrast, collagen fibrils were rarely found at the epithelial-mesenchymal interface of the 12-day gland cultured in the presence of Clostridial or bovine dental pulp collagenase. The findings indicated that the formation of interstitial collagen bundles is essential to form clefts in the epithelium both in vivo and in vitro.