Flow generation by rotating colloids in planar microchannels

Abstract
Non-equilibrium structure formation and conversion of spinning to translational motion of magnetic colloids driven by an external rotating magnetic field in microchannels is studied by particle-based mesoscale hydrodynamics simulations. For straight channels, laning is found. In ring channels, the channel curvature breaks symmetry and leads to a net fluid transport around the annulus with the same rotational direction as the colloidal spinning direction. The dependence of the translational velocity on channel width, ring radius, colloid concentration, and thermal motion is predicted.