Stimulation of cyclic AMP in chondrocyte cultures: effects on sulfated‐proteoglycan synthesis

Abstract
The effects of N 6,O 2′-dibutyryladenosine 3′:5′-cyclic monophosphate (DBcAMP), 8-bromoadenosine 3′:5′-cyclic monophosphate (8Br-cAMP), 3′:5′-cyclic monophosphate (cAMP), L-isoproterenol and L-epinephrine on sulfated-proteoglycan synthesis by rabbit articular chondrocytes were compared. DBcAMP and 8Br-cAMP in the presence or absence of 3-isobutyl-1-methylxanthine (IBMX) stimulated sulfated-proteoglycan biosynthesis after 20 h of incubation. cAMP had no significant effect. Both DBcAMP and 8Br-cAMP increased by hydrodynamic size of the newly synthesized proteoglycan monomer (A1D1) relative to control cultures. By contrast, although isoproterenol and epinephrine stimulated total cAMP synthesis, neither stimulated sulfated-proteoglycan synthesis. Whereas intracellular cAMP accumulated after incubation with DBcAMP and 8Br-cAMP, this was not the case with isoproterenol whether IBMX was present or not. Thus, stimulation of sulfated-proteoglycan synthesis by cAMP analogues in chondrocyte cultures appears to be dependent on increased intracellular cAMP accumulation rather than total cAMP biosynthesis.