A Developmental Analysis of the Enolase Isozymes from Ricinus communis

Abstract
Enolase activity was measured in clarified homogenates of various tissues during the life cycle of the castor oil plant (Ricinus communis L. cv Baker 296). The proportions of total activity due to the plastid and cytosolic isozymes were determined after separation by ion-exchange chromatography. The contribution of the plastid isozyme varied from more than 30% of the total at the midpoint of endosperm development to less than 1% in mature leaves and roots. During endosperm development, enolase activity increased to a peak coincident with the maximum rate of storage lipid accumulation, then decreased to nearly undetectable levels in the mature seed. Plastid enolase protein, measured using an enzyme-linked immunosorbent assay, increased in parallel with the increase in activity but decreased less rapidly and was still easily detectable in mature seeds.